Redação do Site Inovação Tecnológica - 09/07/2010
Os nada menos que 512 pés, dispostos quatro a quatro para formar 128 conjuntos, permitem que os microrrobôs movimentem-se em qualquer direção, sobre terrenos totalmente irregulares. [Imagem: John Suh/Stanford University]
Microrrobôs
O projeto grandioso do Dr. Karl Bohringer, da Universidade de Washington, nos Estados Unidos, contrasta fortemente com os instrumentos que ele pretende usar para realizá-lo.
O pesquisador vislumbra que, em um futuro próximo, milhares de robôs microscópicos, ou microrrobôs, poderão ser atirados de um avião ou de um helicóptero e, ao cair no chão, começarem a desempenhar sozinhos a tarefa para a qual foram projetados.
Entre essas tarefas estão explorar estruturas e regiões assoladas por desastres naturais, coletar dados e analisar amostras do meio ambiente, ou fazer qualquer outra tarefa onde as pequenas dimensões sejam uma vantagem.
"Quinhentopeia"
Para exemplificar o conceito, Bohringer e sua equipe construíram robôs que pesam meio grama, medem apenas alguns centímetros de comprimento e têm a espessura equivalente à de uma unha.
Os nada menos que 512 pés, dispostos quatro a quatro para formar 128 conjuntos, permitem que os microrrobôs movimentem-se em qualquer direção, sobre terrenos totalmente irregulares.
Os microrrobôs estão também entre os mais fortes já construídos: cada um deles é capaz de carregar o equivalente a sete vezes o seu próprio peso, o que pode ser usado tanto para levar cargas para locais pré-determinados, quanto para recolher amostras do meio ambiente.
Pernas super rápidas
O microrrobô foi construído a partir de um chip virado de cabeça para baixo. Aqui ele carrega sete vezes o seu peso em clipes de papel. [Imagem: University of Washington]
O grande avanço está justamente na disposição e na estrutura de movimentação das pernas dessa centopeia robótica. Cada perna é feita com um fio metálico ensanduichado entre dois materiais com coeficientes de expansão termal diferentes - sob calor, um deles se expande mais do que o outro.
Quando uma corrente elétrica passa através da perna do robô, o fio aquece os dois materiais. Como um dos lados se expande mais do que o outro, isto faz a perna se curvar para um dos lados. A desligar a energia, a perna retorna à sua posição original.
A área superficial das pernas é tão grande em comparação com seu volume que elas podem aquecer ou esfriar em apenas 20 milissegundos.
Os conjuntos com centenas de pernas, alimentadas sequencialmente, podem repetir o movimento de 20 a 30 vezes por segundo.
"O tempo de resposta é um ponto interessante nesses robôs minúsculos," explica Bohringer. "No seu forno, pode levar dezenas de minutos para aquecer algo. Mas nesta pequena escala, o aquecimento é muito, muito mais rápido."
Robô-chip
O microrrobô do Dr. Bohringer tem uma longa história. Ele nasceu como um chip para a fabricação de escâneres de imagem e impressoras muito finas. Logo depois ele foi adaptado para ser usado em satélites artificiais.
Agora o que os pesquisadores fizeram foi virá-lo de cabeça para baixo e transformar seus pinos de conexão em pernas, criando um robô parecido com uma centopeia, só que muito mais rápido e muito mais forte.
"É um dos mais fortes atuadores que você pode obter em pequena escala, e ele tem uma das maiores amplitudes de movimentação," conta Bohringer. "Isto é difícil de obter nessa escala."
Gaby Teles

" Eu queria que você fosse um estranho de quem eu pudesse me desligar"
domingo, 11 de julho de 2010
Imagens médicas são criadas com técnica mais rápida que a luz
Redação do Site Inovação Tecnológica - 09/07/2010
Quando uma partícula move-se mais rápido do que a velocidade da luz naquele meio específico, ela produz uma "onda de choque" parecida com a onda sônica gerada quando um avião quebra a barreira do som - é a radiação de Cerenkov. [Imagem: Matt Howard]
A próxima geração de técnicas de imageamento médico poderá se basear em uma tecnologia baseada em um fenômeno que se move mais rapidamente do que a velocidade da luz
De acordo com um grupo de cientistas de várias universidades norte-americanas, a técnica tem potencial para criar exames mais eficientes e mais baratos para o diagnóstico e o tratamento de câncer e de vários outros problemas de saúde.
Luminescência de Cerenkov
A nova técnica de imageamento óptico é chamada de imageamento por luminescência de Cerenkov, ou radiação de Cerenkov, ou mais simplesmente CLI (Cerenkov Luminescence Imaging).
A velocidade da luz depende do meio no qual ela viaja - por exemplo, sua velocidade diminui quando ela viaja através da água. Mas quando uma partícula - um elétron, por exemplo - move-se mais rápido do que a velocidade da luz naquele meio específico, normalmente um isolante, ela produz uma "onda de choque" - de forma muito parecida com a onda sônica gerada quando um avião quebra a barreira do som - emitindo uma luz azul conhecida como radiação de Cerenkov.
É a radiação de Cerenkov que é responsável pela coloração azulada dos reatores nucleares.
Essa luminescência também pode ser gerada pelos contrastes radioativos injetados na corrente sanguínea do paciente. Com isto, é possível dispensar o uso de uma fonte externa de luz, comumente usada para gerar imagens do interior do corpo humano.
A combinação do imageamento óptico com a medicina nuclear representa uma nova forma de gerar imagens a partir dos isótopos médicos.
"Isto dá ao imageamento óptico um conjunto de contrastes nucleares já utilizados clinicamente hoje, que podem ser utilizados imediatamente, ao contrário dos corantes fluorescentes," explica o Dr. Jan Grimm, do Weill Cornell Medical Center, principal autor do artigo que descreve a nova técnica.
Imageamento óptico
O imageamento óptico é uma técnica na qual moléculas luminescentes, projetadas para se ligar a células ou moléculas específicas do corpo humano, são injetadas na corrente sanguínea e então detectadas por um sensor óptico externo. [Imagem: JNM]
Os cientistas consideram que as técnicas de imageamento multimodais representam a próxima fronteira para a geração de imagens do interior do corpo humano mais precisas e a um custo mais baixo. O imageamento óptico é uma técnica na qual moléculas luminescentes, projetadas para se ligar a células ou moléculas específicas do corpo humano, são injetadas na corrente sanguínea e então detectadas por um sensor óptico externo.
Hoje, o imageamento óptico exige a excitação dessas moléculas por uma fonte externa de luz ou por um processo biológico, para que elas emitam a luz que será captada pelo sensor.
A radiação de Cerenkov produz a luz pela radioatividade, dispensando a fonte de luz externa ou sua ativação biológica. É por isto que a nova técnica é considerada como um processo de imageamento híbrido, que combina imagens ópticas com a imagem radioterápica tradicional.
Pósitrons e raios gama
Uma vantagem adicional da imageamento por luminescência de Cerenkov é que ela permite captar imagens de núcleos radioativos que não emitem nem pósitrons e nem raios gama - a maior limitação das técnicas de imageamento nuclear atuais.
Além disso, o imageamento óptico é promissor para uso em endoscopia e em cirurgias graças à sua capacidade de visualizar lesões tumorais, dando informações em tempo real aos médicos para guiar as cirurgias.
"Os benefícios do imageamento óptico são muitos, e nós estamos no caminho certo para torná-los uma realidade para uso nas clínicas e nos hospitais," diz o Dr. Grimm.
Quando uma partícula move-se mais rápido do que a velocidade da luz naquele meio específico, ela produz uma "onda de choque" parecida com a onda sônica gerada quando um avião quebra a barreira do som - é a radiação de Cerenkov. [Imagem: Matt Howard]
A próxima geração de técnicas de imageamento médico poderá se basear em uma tecnologia baseada em um fenômeno que se move mais rapidamente do que a velocidade da luz
De acordo com um grupo de cientistas de várias universidades norte-americanas, a técnica tem potencial para criar exames mais eficientes e mais baratos para o diagnóstico e o tratamento de câncer e de vários outros problemas de saúde.
Luminescência de Cerenkov
A nova técnica de imageamento óptico é chamada de imageamento por luminescência de Cerenkov, ou radiação de Cerenkov, ou mais simplesmente CLI (Cerenkov Luminescence Imaging).
A velocidade da luz depende do meio no qual ela viaja - por exemplo, sua velocidade diminui quando ela viaja através da água. Mas quando uma partícula - um elétron, por exemplo - move-se mais rápido do que a velocidade da luz naquele meio específico, normalmente um isolante, ela produz uma "onda de choque" - de forma muito parecida com a onda sônica gerada quando um avião quebra a barreira do som - emitindo uma luz azul conhecida como radiação de Cerenkov.
É a radiação de Cerenkov que é responsável pela coloração azulada dos reatores nucleares.
Essa luminescência também pode ser gerada pelos contrastes radioativos injetados na corrente sanguínea do paciente. Com isto, é possível dispensar o uso de uma fonte externa de luz, comumente usada para gerar imagens do interior do corpo humano.
A combinação do imageamento óptico com a medicina nuclear representa uma nova forma de gerar imagens a partir dos isótopos médicos.
"Isto dá ao imageamento óptico um conjunto de contrastes nucleares já utilizados clinicamente hoje, que podem ser utilizados imediatamente, ao contrário dos corantes fluorescentes," explica o Dr. Jan Grimm, do Weill Cornell Medical Center, principal autor do artigo que descreve a nova técnica.
Imageamento óptico
O imageamento óptico é uma técnica na qual moléculas luminescentes, projetadas para se ligar a células ou moléculas específicas do corpo humano, são injetadas na corrente sanguínea e então detectadas por um sensor óptico externo. [Imagem: JNM]
Os cientistas consideram que as técnicas de imageamento multimodais representam a próxima fronteira para a geração de imagens do interior do corpo humano mais precisas e a um custo mais baixo. O imageamento óptico é uma técnica na qual moléculas luminescentes, projetadas para se ligar a células ou moléculas específicas do corpo humano, são injetadas na corrente sanguínea e então detectadas por um sensor óptico externo.
Hoje, o imageamento óptico exige a excitação dessas moléculas por uma fonte externa de luz ou por um processo biológico, para que elas emitam a luz que será captada pelo sensor.
A radiação de Cerenkov produz a luz pela radioatividade, dispensando a fonte de luz externa ou sua ativação biológica. É por isto que a nova técnica é considerada como um processo de imageamento híbrido, que combina imagens ópticas com a imagem radioterápica tradicional.
Pósitrons e raios gama
Uma vantagem adicional da imageamento por luminescência de Cerenkov é que ela permite captar imagens de núcleos radioativos que não emitem nem pósitrons e nem raios gama - a maior limitação das técnicas de imageamento nuclear atuais.
Além disso, o imageamento óptico é promissor para uso em endoscopia e em cirurgias graças à sua capacidade de visualizar lesões tumorais, dando informações em tempo real aos médicos para guiar as cirurgias.
"Os benefícios do imageamento óptico são muitos, e nós estamos no caminho certo para torná-los uma realidade para uso nas clínicas e nos hospitais," diz o Dr. Grimm.
terça-feira, 1 de junho de 2010
Descoberta nova partícula que interfere no movimento da eletricidade
Redação do Site Inovação Tecnológica - 31/05/2010
O experimento demonstrou que o modelo de bandgap baseado unicamente no elétron não é suficiente para descrever o movimento das cargas elétricas no grafeno, que é muito mais complexa do que se imaginava.[Imagem: Bostwick et al./Science]
Como a eletricidade se move
Você aprendeu na escola que a eletricidade é criada pelo movimento dos elétrons.
Se foi um pouco mais aplicado, aprendeu também que o movimento da eletricidade se dá por meio dos "portadores de carga" - os próprios elétrons, negativos, e as lacunas, positivas, onde os elétrons se alojam durante seu movimento.
Mas as coisas começam a se tornar mais emocionantes conforme se mergulha rumo ao mundo nano.
Tome por exemplo o grafeno, um material formado por uma única camada de átomos de carbono e que é visto como um dos mais promissores tanto na área de materiais quanto na eletrônica.
Plasmon
Como a eletricidade se move no grafeno?
Ela continua tendo elétrons e lacunas como portadores de carga, mas que começam a ser influenciados pelos plasmons de superfície - vale lembrar que o grafeno é bidimensional, ou seja, ele é inteiro superfície.
Os plasmons de superfície são ondas de luz acopladas a ondas de elétrons, que surgem na interface entre um metal e um dielétrico, um material não-condutor, como o ar - ou seja, ao longo de todo o grafeno.
Essas "oscilações de densidade" movem-se de forma parecida com o som, através do "mar de elétrons" que existe na superfície do grafeno.
Plasmaron
Agora, pela primeira vez, os cientistas detectaram um plasmaron, uma quase-partícula, ou partícula composta, formada por uma portadora de carga normal acoplada a um plasmon.
"Embora os plasmarons tenham sido propostos teoricamente na década de 1960, e evidências indiretas deles já tenham sido encontradas, o nosso trabalho consiste na primeira observação de suas bandas de energia distintas," afirma Eli Rotenberg, do Laboratório Lawrence Berkeley, nos Estados Unidos.
Rotenberg é o coordenador do grupo que identificou diretamente a assinatura inequívoca do plasmaron.
Plasmônica
O entendimento das relações existentes entre esses três tipos de "partículas" - portadoras de carga (elétrons e lacunas), plasmons e plasmarons - pode levar ao uso do grafeno na chamada plasmônica.
O nome plasmônica vem dos plasmons de superfície. Assim como nos circuitos eletrônicos atuais, os sinais são transmitidos por elétrons, nos futuros circuitos plasmônicos os sinais serão transmitidos pela oscilação conjunta de sinais elétricos e ópticos.
Até agora os experimentos vinham se baseando sobretudo nas quase-partículas chamadas polaritons. Os plasmarons vêm se somar à caixa de ferramentas dos cientistas em busca dessa área emergente da tecnologia em nanoescala, frequentemente chamada de "luz por meio de fios".
sexta-feira, 28 de maio de 2010
Pele de tubarão vira tinta para revestir aviões e geradores eólicos
Redação do Site Inovação Tecnológica - 28/05/2010
As escamas dos tubarões evoluíram ao longo de milhões de anos para permitir que o animal nade muito rápido, diminuindo a resistência contra o fluxo da água.[Imagem: EMU/University of Cape Town]
Um grupo de cientistas alemães anunciou recentemente estar tentando copiar o truque de uma samambaia para manter-se seca para criar um revestimento biônico para navios, ajudando-os a economizar até 1% de todo o combustível fóssil consumido no planeta.
Mas seus colegas do Instituto Fraunhofer, também na Alemanha, acreditam que os tubarões são uma aposta com melhores possibilidades de ganhos a curto prazo.
Escamas de tubarões
De olho não apenas nos navios, mas principalmente nos aviões e nas turbinas eólicas, os pesquisadores criaram um novo sistema de pintura que imita a pele dos tubarões, diminuindo a resistência ao arrasto - do ar ou da água - e, por decorrência, fazendo-os gastar menos combustível ou gerar mais eletricidade.
A inspiração para a criação da nova tinta veio das escamas dos tubarões. Essas escamas, que evoluíram ao longo de milhões de anos para permitir que o animal nade muito rápido, diminuem a resistência contra o fluxo de um fluido.
A inspiração para a criação da nova tinta veio das escamas dos tubarões. Essas escamas, que evoluíram ao longo de milhões de anos para permitir que o animal nade muito rápido, diminuem a resistência contra o fluxo de um fluido.
No caso dos tubarões, o fluido é obviamente a água. Mas a solução também funciona para o ar, permitindo que a tinta anti-arrasto possa ser aplicada aos aviões e pás dos geradores eólicos.
Nanopartículas
O maior desafio enfrentado pela equipe da Dra. Yvonne Wilke foi aprimorar o sistema de revestimento para que ele pudesse resistir às altas velocidades, à intensa radiação ultravioleta e às flutuações de temperatura - de -55 a +70 graus Celsius - a que os aviões estão sujeitos rotineiramente.
A principal parte da receita da nova tinta são nanopartículas especialmente desenvolvidas pela Dra. Wilke e seus colegas Volkmar Stenzel e Manfred Peschka.
As nanopartículas dão à tinta as suas características de resistência à radiação ultravioleta, às variações de temperatura e à carga a que está submetida toda a superfície do avião ou do navio.
Pintura com estêncil
"Nossa solução consiste não em aplicar a tinta diretamente, mas através de um estêncil," afirma Peschka. Segundo o pesquisador, é isto que dá ao revestimento sua estrutura parecida com a pele de tubarão.
O segredo da técnica está em aplicar a tinta líquida de forma totalmente uniforme, em uma fina camada sobre o estêncil e, ao mesmo tempo garantir que o estêncil possa ser novamente retirado.
A dificuldade reside em que é necessário a aplicação de radiação ultravioleta para que o revestimento seque e endureça. Mas os pesquisadores afirmam ter vencido esta etapa.
Eles também testaram o revestimento em navios, obtendo um ganho de 5% na redução do atrito. Mas as algas e cracas que grudam no casco dos navios representam um desafio à parte e os cientistas ainda estão trabalhando em busca da melhor solução para esse problema.
Rotores eólicos
Segundo os cálculos dos cientistas, se todos os aviões em uso hoje recebessem a nova tinta, isto resultaria em uma economia anual de 4,48 milhões de toneladas de combustível.
Além da economia de combustível, existem aplicações ainda mais interessantes - por exemplo, nas fazendas de energia eólica.
A resistência do ar tem um efeito negativo sobre as pás do rotor. A nova pintura poderá melhorar o grau de eficiência dos geradores eólicos e, portanto, aumentar sua capacidade de geração de energia.
Material fotorreversível põe 500 Blu-ray em um único disco
Jon Cartwright - RSC - 28/05/2010
Os pesquisadores usaram um material baseado em nanocristais de pentóxido de titânio (Ti3O5), que eles criaram sinterizando o óxido de titântio (TiO2) com hidrogênio.[Imagem: Ohkoshi et al./Nature Chemistry]
Um grupo de químicos japoneses criou o primeiro material capaz de sofrer uma transição fotorreversível de metal para semicondutor.
Segundo eles, a descoberta terá aplicação direta no armazenamento óptico de dados em ultra-alta densidade, com discos capazes de conter até 500 vezes a densidade de um disco Blu-ray.
Alterar a matéria com luz
Nos últimos anos tem havido um interesse crescente na busca de formas de alterar as propriedades físicas da matéria.
A temperatura e a pressão podem transformar materiais, digamos, de isolantes para condutores ou de não-magnéticos para magnéticos - mas os dois parâmetros são de difícil controle no interior de complexos dispositivos de memória em nanoescala.
Em vista disso, os pesquisadores começaram a procurar por formas de alterar a matéria usando luz - as chamadas transições de fase fotoinduzidas - cujo "estímulo" para a alteração da matéria é dado por um laser.
Recentemente, o laser foi usado para criar magnetismo artificial, para permitir que físicos enxergassem através de materiais opacos, para retorcer estruturas rígidas e até para criar um fenômeno quântico conhecido como transparência induzida por luz.
Transição fotoinduzida
Agora, Shin-ichi Ohkoshi e seus colegas da Universidade de Tóquio produziram o que pode ser a transição fotoinduzida - a passagem de um material de uma fase para outra pela ação da luz - mais prática e mais útil já demonstrada.
Segundo os pesquisadores, a transição de metal para semicondutor satisfaz os três requisitos principais para o armazenamento óptico de dados:
la funciona a temperatura ambiente;
o estímulo é dado por luz na faixa do ultravioleta - o que é essencial para as memórias de alta densidade;
e a luz necessária para gravar os dados na memória é de baixa potência.
Cristais de titânio
Os pesquisadores usaram um material baseado em nanocristais de pentóxido de titânio (Ti3O5), que eles criaram sinterizando o óxido de titântio (TiO2) com hidrogênio.
Os nanocristais de Ti3O5 estão normalmente em um estado de mínima energia, conhecido como "lambda", no qual o material é um condutor metálico.
No entanto, a irradiação dos nanocristais com luz ultravioleta faz com que eles saltem para um outro nível mínimo de energia, o estado "beta", no qual as cargas ficam deslocalizadas, como em um semicondutor.
Para colocar os nanocristais de volta para o estado lambda, basta irradiá-los novamente com luz ultravioleta de um comprimento de onda um pouco menor.
500 Blu-Ray em um disco
"O que eu acho mais interessante para as potenciais aplicações é o fato de que o material obtido é nanoestruturado - isto é, ele possui intrinsecamente uma resolução muito alta e, portanto, pode ser apropriado para armazenamento de dados de ultra alta densidade," diz Alex Kolobov, um especialista em mudança de fase de materiais do Instituto Nacional de Ciências e Tecnologias Avançadas do Japão.
Na verdade, o grupo de Ohkoshi acredita que um sistema de memória baseado nos novos nanocristais seria capaz de acomodar uma densidade de dados de 1 terabit por polegada quadrada, ou 500 vezes mais do que um disco Blu-ray.
Eles agora estão planejando criar um protótipo de sistema desse tipo usando a luz de "campo próximo" de um microscópio eletrônico de varredura.
Jogadores espanhóis terão camisa inteligente que monitora o coração
Anelise Infante - BBC - 28/05/2010
Os dados transmitidos pela camisa inteligente proporcionam um eletrocardiograma completo e ainda medem com precisão o esforço realizado pelo atleta, especificando os quilômetros percorridos por ele e sua velocidade.[Imagem: BBC]
Quatro clubes da primeira divisão do futebol espanhol testaram um modelo de camiseta inteligente que avisa em tempo real qualquer alteração cardíaca dos atletas durante a atividade física.
Morte de jogadores em campo
O Ministério de Indústria da Espanha financiou a pesquisa de um modelo de roupa inteligente para reduzir os casos de morte súbita de jogadores depois que atletas da primeira divisão tiveram ataques cardíacos em pleno jogo.
Puerta, lateral do Sevilla, morreu em 2007, três dias depois de sofrer um ataque cardíaco em campo. E Jarque, zagueiro do Espanyol, morreu em 2008 em um infarto em um hotel. Outros dois jogadores (De la Reb e Sérgio Sanchez) tiveram infarto enquanto jogavam.
Camisa que monitora o coração
A nova camisa tem um sistema de microchip que detecta sinais do coração durante o esforço físico. O sinal é transmitido em tempo real e pode ser captado por um telefone celular ou ir diretamente para um computador.
Os dados transmitidos proporcionam um eletrocardiograma completo e ainda medem com precisão o esforço realizado pelo atleta, especificando os quilômetros percorridos por ele e sua velocidade.
Os primeiros modelos da camiseta foram experimentados por pacientes da Unidade de Cardiologia do Hospital La Paz, em Madri.
Eles foram monitorados em repouso e durante a atividade física usando a vestimenta.
Folgado
Aprovada pelos médicos, a roupa foi experimentada por atletas de elite do Real Madrid e Barcelona e está em fase experimental para os do Sevilla e Atlético de Bilbao.
O chefe do departamento médico do Sevilla, Juan Ribas, disse à BBC Brasil que "o projeto é muito bom e muito necessário ao futebol, mas precisa ser melhorado".
Segundo o médico, a camisa "proporciona um eletrocardiograma, mas não o analisa. Num momento de emergência, toda a informação precisa pode e será vital para evitar uma morte súbita".
Camisa inteligente
A Federação Espanhola de Futebol disse à BBC Brasil que "as regras do futebol são estabelecidas por instituições internacionais que não permitem o uso de peças inteligentes sem prévia aprovação, portanto esta camisa ainda não tem permissão expressa para ser usada nas competições oficiais".
"Mas ninguém pode descartá-la em um futuro breve, se for comprovada que pode ajudar a salvar vidas. É uma questão de bom senso", completou a assessoria de imprensa.
O projeto da camisa inteligente deverá ser aplicado ainda em 2010 em outros esportes como automobilismo, atletismo, motociclismo e ciclismo.
quinta-feira, 27 de maio de 2010
Interface por gestos usa luva colorida e webcam
Redação do Site Inovação Tecnológica - 25/05/2010
Uma luva colorida e uma webcam. Este é todo o hardware necessário para operar um novo sistema de computação baseada em gestos, criada por um estudante do MIT.[Imagem: Jason Dorfman/CSAIL]
Uma luva colorida e uma webcam. Este é todo o hardware necessário para operar um novo sistema de computação baseada em gestos, criada por um estudante do MIT, nos Estados Unidos.
2D versus 3D
Outros protótipos de interfaces gestuais já utilizaram fitas coloridas ou reflexivas coladas na ponta dos dedos ou mesmo em luvas.
"Mas isto é informação 2D. Você está usando apenas as pontas dos dedos e nem mesmo sabe que fita corresponde a qual dedo," critica Robert Wang, criador da nova interface, bem mais espalhafatosa.
A luva colorida permite a geração de um modelo 3D da mão na tela do computador, praticamente em tempo real, com uma defasagem mínima. "Este [equipamento] de fato captura a configuração 3D da sua mão e dos seus dedos. Nós sabemos como os seus dedos estão se movimentando," diz Wang.
Luvas coloridas
Foram testados diversos designs de luva, com pontos coloridos e "remendos" de diversos formatos. A versão atual, que apresentou os melhores resultados até agora, possui 20 formatos irregulares, usando 10 cores diferentes.
O número de cores é restrito porque o sistema deve ser capaz de reconhecer cada uma delas com confiabilidade, em diversas condições de iluminação e com diferentes objetos no background da cena.
Diversão e uso sério
A vocação da nova tecnologia de interface por gestos são os videogames. Mundos virtuais, por exemplo, permitem que o usuário pegue e manipule objetos usando apenas gestos com as mãos.
Mas Wang afirma que engenheiros e projetistas também poderão usar o sistema para manipular de forma mais intuitiva modelos 3D de produtos comerciais, equipamentos mecânicos ou grandes obras de construção civil.
Diminuição da resolução
O software de reconhecimento das imagens foi baseado em uma outra pesquisa do MIT, quando Antonio Torralba e seus colegas desenvolveram um algoritmo que reconhece imagens diminuindo sua resolução.
Depois que a webcam captura a imagem, o software retira o background, deixando a luva superposta a um fundo branco. Então o programa reduz drasticamente a resolução da imagem resultante, até atingir 40 por 40 pixels.
Finalmente, ele compara a imagem capturada com uma base de dados contendo centenas de modelos digitais de 40 x 40 pixels, até encontrar aquela que corresponda à posição atual.
Esse mecanismo, que elimina a necessidade de cálculos, retorna uma resposta em uma fração de segundo, praticamente eliminando os retardos no uso da luva.
Assinar:
Postagens (Atom)