Gaby Teles

Gaby Teles
" Eu queria que você fosse um estranho de quem eu pudesse me desligar"

terça-feira, 18 de maio de 2010

Ciência do século 21 exige realidade virtual e inteligência artificial

Por: Fabio Reynol - Agência Fapesp - 14/05/2010
 Site Inovação Tecnológica














"É preciso admitir que a maior parte dos dados levantados hoje pela ciência jamais será vista por olhos humanos. É simplesmente impossível," diz o pesquisador. [Imagem: NASA/James Blair]


lboratórios virtuais

Um matemático resolve equações mergulhado em uma piscina virtual de números e gráficos, na qual ele pode andar e observar os resultados que são construídos à sua volta.
Um químico testa novas interações moleculares movendo manualmente átomos do tamanho de bolas de tênis, que ficam ao seu redor e reproduzem em três dimensões as substâncias formadas.
Esses exemplos futuristas são a solução imaginada por George Djorgovski, professor de astronomia do Instituto de Tecnologia da Califórnia (Caltech), dos Estados Unidos, para que pesquisadores consigam lidar com os dados cada vez mais complexos que a ciência vem produzindo em quantidade gigantesca.



Limite da capacidade human

Durante o Faculty Summit 2010 América Latina, evento promovido pela FAPESP e pela Microsoft Research, que se encerra hoje (14/05), Djorgovski explicou que a quantidade e a complexidade dos dados científicos ultrapassou os limites da capacidade humana para entendê-los e até mesmo para observá-los.
"É preciso admitir que a maior parte dos dados levantados hoje pela ciência jamais serão vistos por olhos humanos. É simplesmente impossível," disse Djorgovski.
O pesquisador usou como exemplos trabalhos de sua própria área de atuação, a astronomia. Telescópios monitorados por sistemas automáticos registram diariamente enormes quantidades de dados que não poderiam ser totalmente analisados nem se toda a população da Terra fosse formada por astrônomos, de acordo com Djorgovski.



Revolução da informação

O mesmo acontece com outras áreas da ciência que trabalham com grandes quantidades de informações, como é o caso dos estudos sobre a biodiversidade e a climatologia. Além de enorme, esse banco de dados está dobrando de tamanho a cada ano e meio.
"A tecnologia da informação é uma enorme revolução que ainda está em andamento. Ela é muito maior que a Revolução Industrial e só é comparável à imprensa de Gutemberg. Essa revolução tem mudado até os paradigmas científicos vigentes", declarou o pesquisador.



Armas de instrução de massa

le explica que as ferramentas, os dados e até os métodos utilizados pela ciência migraram para o mundo virtual e agora só podem ser trabalhados nele.
"Com isso, a web tem potencial para transformar todos os níveis da educação. É uma verdadeira arma de instrução em massa", ressaltou fazendo um trocadilho com o termo militar.
"Ferramentas de pesquisa de última geração podem ser utilizadas por qualquer pessoa do mundo com acesso banda larga à internet", afirmou Djorgovski. Como exemplo, o pesquisador falou que países que não possuem telescópios de grande porte podem analisar e ainda fazer descobertas com imagens feitas pelos melhores e mais potentes equipamentos disponíveis no mundo.



Em busca de sentid

No entanto, trabalhar a educação também envolve o processamento de grande quantidade de informações. Essa montanha de dados a ser explorada levou o pesquisador a questionar a utilidade de uma informação que não pode ser analisada.
Nesse sentido, Djorgovski considera tão importante quanto a coleta de dados, os processos subsequentes que vão selecionar o que for considerado relevante e lhes dar sentido.
São os trabalhos de armazenamento, mineração e interpretação de dados, etapas que também estão ficando cada vez mais a cargo das máquinas.
Além da quantidade, também a complexidade das informações está ultrapassando a capacidade humana de entendimento. "Podemos imaginar um modelo de uma, duas ou três dimensões. Mas um universo formado por 100 dimensões é impossível. Você poderá entender matematicamente a sua formação, mas jamais conseguirá imaginá-lo", desafiou o astrônomo.



Realidade virtual a serviço da ciência

Mesmo assim, ele acredita que ainda há espaço para que raciocínio humano amplie sua capacidade, contanto que receba uma ajuda externa: a da realidade virtual. "A tecnologia desenvolvida para os jogos eletrônicos poderá ajudar o pesquisadores a ter maior compreensão de seu objeto de pesquisa, ao proporcionar uma visualização que o envolve completamente", afirmou ilustrando com os exemplos do matemático e do químico, citados acima.
Para Djorgovski, um dos grandes problemas da ciência atual consiste em lidar com uma complexidade crescente de informações. Como solução, o pesquisador aposta no desenvolvimento de novos sistemas de inteligência artificial.
"As novas gerações de inteligência artificial estão evoluindo de maneira mais madura. Elas não emulam a inteligência humana, como faziam as primeiras versões. Com isso conseguem trabalhar dados mais complexos", disse.
A chave para essas soluções, segundo o astrônomo, é a ciência da computação. "Ela representa para o século 21 o que a matemática foi para as ciências dos séculos 17, 18 e 19", disse afirmando que a disciplina é ao mesmo tempo a "cola" e o "lubrificante" das ciências atuais.

domingo, 16 de maio de 2010

Nanotecnologia

Nova técnica usa luz para observar funcionamento do cérebro

Redação do Site Inovação Tecnológica - 14/05/2010


Usando proteínas fluorescentes, cientistas conseguem enxergar a eletricidade fluindo ao longo dos neurônios,em um feito que deverá dar um impulso inédito no estudo da fisiologia cerebral e das atividadesneuraiassociadas com o comportamento.[Imagem: Lutcke et al./Frontiersin]

Por mais intensa que seja, não é possível enxergar diretamente a corrente elétrica que flui através de um fio metálico.
Mas agora já é possível enxergar a eletricidade fluindo ao longo das células nervosas do cérebro, em um feito que deverá dar um impulso inédito no estudo da fisiologia cerebral e das atividades neurais associadas com o comportamento.



Potenciais de ação

Um grupo de cientistas do Japão e da Suíça usou uma proteína fluorescente para acompanhar a atividade elétrica no interior dos neurônios de uma cobaia viva.
Os neurônios comunicam-se uns com os outros por meio dos chamados potenciais de ação. Durante um potencial de ação, uma diferença de potencial elétrico faz abrir canais de cálcio, causando um rápido influxo de íons de cálcio.
Esse acoplamento preciso entre o disparo do neurônio e o movimento dos íons permite que proteínas fluorescentes funcionem como indicadores dos potenciais de ação.

Proteínas camaleão

Essas proteínas especializadas têm duas subunidades fluorescentes, uma que irradia luz amarela e outra que irradia luz azul.
Quando as proteínas se ligam ao cálcio, a proporção entre a emissão de luz amarela e de luz azul varia, indica diferentes níveis de cálcio.
Essa variação de cores explica porque os cientistas chamam essas proteínas de "proteínas camaleão".
Usando uma nova variedade de proteína camaleão, chamada YC3.60, os cientistas conseguiram gravar a reação a estímulos sensoriais das células nervosas do cérebro intacto de camundongos.
Cada vez que os bigodes dos animais eram flexionados por uma corrente de ar, observava-se uma mudança nas cores da proteína camaleão nos neurônios das áreas sensoriais do córtex.

Vendo o cérebro funcionar

"A proteína camaleão YC3.60 nos permite medir os potenciais de ação não apenas de fatias de tecido cerebral in vitro, mas também em um cérebro intacto. A molécula reage rapidamente e com grande sensibilidade, e ainda detecta alterações nas concentrações de cálcio ocorrendo mesmo em sequências muito rápidas," diz o Dr. Mazahir Hasan, do Instituto Max Planck de Pesquisas Médicas.
A técnica permite o rastreamento da atividade elétrica tanto em neurônios individuais quanto em agrupamentos funcionais de células. "O que é mais vantajoso é que nós podemos medir simultaneamente a atividade de redes neurais ou de regiões inteiras do cérebro," afirma Hasan.
O próximo passo que os cientistas pretendem dar é introduzir proteínas camaleão seletivamente em camadas corticais específicas ou em diferentes tipos de células nervosas, o que permitirá compreender como as diferentes células nervosas presentes nos circuitos do cérebro geram comportamentos complexos.

Medindo sem eletrodos






































Esquema de funcionamento da nova técnica de observação do funcionamento do cérebro, que utiliza fibras ópticas para captar a luz das proteínas fluorescentes. [Imagem: Mazahir T. Hasan]As proteínas duplamente fluorescentes poderão revolucionar o estudo da atividade elétrica do cérebro, permitindo literalmente que se veja o cérebro funcionar em animais vivos - e, no futuro, eventualmente também em seres humanos.
Até hoje, a única forma que os cientistas têm para fazer isso é inserindo eletrodos nas células ou nos tecidos nervosos. Mas essa técnica, além de danificar os tecidos, não dá informações sobre os  diferentes tipos de células nervosas.
Já as alterações de cor das proteínas camaleão podem ser observadas de forma muito menos invasiva, usando fibras ópticas ou com a ajuda dos modernos microscópios de fluorescência - conhecidos como microscópios de rastreamento por laser de dois fótons.

Informação genética

Outra grande vantagem da nova técnica é que as proteínas camaleão podem ser formadas no interior das próprias células a serem observadas, bastando que uma seção correspondente de DNA seja inserida previamente no genoma.
Em dois experimentos realizados pelo grupo de cientistas, vírus foram utilizados como veículo para levar a informação genética das proteínas camaleão para as células nervosas.
Esta nova técnica, de observação do cérebro com luz, fornece uma ferramenta sem precedentes para estudar como as memórias se formam ou são perdidas.
Ou onde e como os padrões de atividades cerebrais são alterados durante o envelhecimento ou na ocorrência de doenças neurológicas, como Alzheimer, Parkinson e esquizofrenia.